Browse Category: Química 1

Quimica 1 – Primer Semestre

2.3 CAMBIOS DE LA MATERIA

Con anterioridad se expusieron diversas manifestaciones de la materia y de la energía, la forma en que están interrelacionadas, de tal manera que ahora es posible cuestionarnos ¿cómo puede la energía provocar cambios sobre la materia? Para explicar esto utilizaremos como ejemplos fenómenos que ocurren a tu alrededor.

Siempre que una sustancia cambia, alguna forma de energía interviene. Así, decimos que un cambio es una conversión de la materia, de una a otra forma distinta, debido a su interacción con la energía.

Reflexiona sobre las siguientes preguntas:

¿Qué sucede con la gasolina para que se pueda poner en marcha un automóvil?. ¿Por qué se oxidan los metales?. ¿Sucede algún cambio cuando se seca la pintura de alguna superficie?. ¿Por qué un chocolate se derrite en tus manos?. ¿A qué se debe el brillo del sol?. ¿Cómo enfría un refrigerador?. ¿Por qué la carne cambia de color cuando la cocinamos?. ¿A qué se debe que tu organismo se encuentre normalmente a 37ºC?. ¿Por qué el hielo funde en el agua?. ¿Por qué al hervir agua desprende vapor?. ¿Cómo se produce energía eléctrica en una pila?. ¿De dónde obtienen las plantas su energía?. ¿Por qué el aroma de un perfume se volatiliza rápidamente?.

Las preguntas anteriores corresponden a algunos ejemplos de cambios que observamos muy a menudo y que pocas veces analizamos; la lista puede parecer larga y, sin embargo éstos son ejemplos de que existe una interacción entre materia y energía para producir un cambio.

Las respuestas a estas preguntas las conocerás más adelante, pero es necesario aclarar que un cambio puede manifestarse en diferentes formas, es decir, existen distintos tipos de cambios sobre la materia, a saber: FÍSICOS, QUÍMICOS Y NUCLEARES.

2.2.1 OTRAS FORMAS DE ENERGÍA

Desde el inicio de la civilización, el hombre ha utilizado la energía para su beneficio. Inicialmente, su única fuente de energía era el Sol. Posteriormente se usó la madera para la calefacción y los animales (que se alimentaban de vegetales) para el transporte; es decir, se aprovechaba de cierta manera la energía solar absorbida por las plantas en la fotosíntesis.

Los chinos empleaban el carbón hace 2000 años, los griegos lo utilizaban especialmente en la fundición del bronce y en Europa desde el siglo XII se conoce el carbón mineral (coque) aplicado en la herrería y la fundición. Con este combustible se hizo funcionar la primera máquina de vapor y antes se usaron el molino de viento y la rueda de agua.

Los primeros usos que se dieron al petróleo fueron para el alumbrado, el asfalto y los materiales de construcción; se sabe que los mayas utilizaban el chapopote para estos fines, y en la India se empleaba gas natural como combustible.

El petróleo, como energético, cobró importancia en 1859, y con ello el desarrollo de los motores de combustión interna que son la base del automóvil y del aeroplano. Por otra parte, la primera estación de energía eléctrica se construyó en 1882, y el desarrollo de la energía nuclear y sus impresionantes aplicaciones se inició en 1938.

Así, desde el fuego hasta la energía nuclear, la humanidad ha ido haciendo suyas las fuentes de energía y esto ha permitido su extraordinario desarrollo tecnológico; sin embargo, el empleo desordenado de estas fuentes ha traído como consecuencia grandes problemas socioeconómicos, políticos y ecológicos. En la crisis de energéticos (1972-1974) se tomó conciencia por primera vez que el petróleo sería escaso y costoso a fines del siglo XX y esto obligó a buscar otras opciones de energéticos, entre ellas, la fuente original: la Energía Solar.

Energía Solar

El Sol es nuestra principal fuente de energía, el cual llega a la Tierra en forma de luz y calor. La cantidad de energía que recibimos del astro es tal que con una sola parte de ella podríamos satisfacer todas las necesidades energéticas de nuestro planeta. Entonces ¿cuál es la razón por la que se ha tenido que recurrir a otras fuentes de energía?

El Sol es una fuente continua de energía, pero la luz que llega a la tierra depende de las condiciones climatológicas, además de que se interrumpe durante la noche, por lo que es necesario resolver el problema de cómo captarla y poder convertirla en otras formas de energía a utilizarse o almacenarse.

En la actualidad ya se obtiene energía eléctrica a partir del Sol. Existe un método en el cual se emplean varios kilómetros cuadrados de terreno cubiertos de celdas que almacenan la energía solar y la convierten en electricidad. A estas celdas se les denomina celdas fotovoltaicas.

Otra alternativa para concentrar la luz solar es la utilización de espejos o lentes. Para el uso doméstico, se puede acondicionar un sistema de recolección de energía solar en los techos de las casas, para utilizarla en la calefacción.

Como se mencionó, otro de los problemas que el hombre está tratando de resolver es el almacenamiento de la energía solar. Esto se ha podido hacer transformándola en energía química, como es el caso del hidrógeno, cuyo proceso se muestra en el siguiente esquema:

x Combustible E

En primer lugar, la energía solar se transforma en energía eléctrica, y ésta se emplea en la electrólisis del agua, obteniéndose oxígeno e hidrógeno, el cual se puede almacenar y transportar para ser utilizado como combustible.

Energía de hidrógeno

Quién haya leído La Isla Misteriosa de Julio Verne, recordará las palabras del capitán Nemo, el personaje principal: “Si amigos, creo que el agua será un día empleada como combustible, que sus constituyentes, hidrógeno y oxígeno, utilizados aislada o simultáneamente, proporcionarán una fuente inagotable de luz y calor”.

Lo que no era más que un sueño está en camino de convertirse en realidad, ya que el hidrógeno, obtenido del agua, constituirá en el siglo XXI una de las principales fuentes de energía.

A temperatura ambiente, el hidrógeno no reacciona con el oxígeno, pero a 600 ºC aproximadamente, la reacción es muy violenta y libera gran cantidad de energía produciendo agua, de acuerdo a la siguiente reacción 2H2 + O2 H2O. Esta energía se puede utilizar como sustituto de gasolina u otros combustibles. El hidrógeno, entonces, es considerado como el combustible ideal, ofreciendo ventajas sobre otros con la única desventaja de necesitar de enormes depósitos para su almacenamiento.

Energía eólica

Calentadas por rayos solares (energía solar) las masas de aire se ponen en movimiento (más adelante, en este curso, conocerás la explicación del fenómeno) y producen lo que conocemos como vientos a partir de los cuales se obtiene la energía eólica. Nuestros antepasados explotaron durante miles de años esta fuente de energía, por ejemplo, los egipcios, 3000 años antes de nuestra era, ya navegaban por el Nilo gracias a la acción de los vientos y en el siglo VII existían molinos de vientos para moler grano.

Actualmente existen máquinas eólicas que captan energía del viento (como los molinos holandeses), independientemente de la dirección del mismo, y son utilizadas para bombear agua y producir electricidad.

Energía de las mareas

Otra forma de energía, que comienza a impactar en importantes proyectos, es la que se obtiene a partir de la fuerza de las mareas. En las llamadas centrales mareo-motrices, el desnivel de las mareas se utiliza de forma semejante al de las centrales hidroeléctrica, que generan electricidad a partir de la energía de una caída de agua.

Para captar la energía de las mareas debe construirse una presa en una bahía. Con la marea (ascendente o descendente), el agua circula de la presa a la bahía y viceversa. La energía marítima se transforma en corriente eléctrica por medio de conjuntos turbinaalternador, capaces de funcionar en los dos sentidos de flujo. La potencia desarrollada depende del volumen útil de la presa y el desnivel máximo entre ésta y la bahía.

Energía geotérmica

A medida que se penetra en el interior del planeta, la temperatura aumenta. En promedio aumenta 1ºC cada 33 metros. Esto varía de unas regiones a otras, dependiendo de numerosos factores, entre lo que sobresalen: la conductividad térmica de las rocas, el tipo de reacciones químicas que hay en la zona, la presencia y cantidad de sustancias radioactivas, y la proximidad de rocas eruptivas que pueden proveer calor. Este aumento en la temperatura es la manifestación de la energía geotérmica.

Las centrales geotérmicas, llamadas de alta energía explotan sistemáticamente las fuentes de agua caliente y en ocasiones de agua hierviendo que expulsan chorros de vapor a 240 °C. El vapor es recogido por canales y después es conducido bajo presión a las turbinas generadoras de electricidad.

Biogas

Hay una fuente de energía todavía más sorprendente: el estiércol, que está formado por restos orgánicos vegetales y excrementos de animales, el cual se utiliza como abono y puede tener aplicaciones insospechadas.

La fermentación del estiércol proporciona biogas (gas producido por procesos biológicos), que es semejante al gas natural y tiene principalmente metano (CH4) y dióxido de carbono (CO2) el biogas es un combustible de buena calidad y de fácil obtención. Los excrementos de una vaca en un año permiten obtener aproximadamente 500 m3 de gas, o sea el equivalente a 300 litros de gasolina.

Después de la producción de este gas, los residuos de la fermentación siguen siendo utilizables como fertilizantes. Desde el punto de vista de la ecología, el biogas representa una fuente de energía especialmente interesante, ya que no es perjudicial para el ambiente.

ACTIVIDAD DE REGULACIÓN

Identifica a que tipo de energía hacen referencia las siguientes afirmaciones:

En esta actividad deberás de anotar, en los renglones, a qué típo de energía hacen referencia las siguientes afirmaciones:

La energía que se obtiene es a través de la luz y/o de calor: ____________________

x Esta forma de energía se
obtiene cuando alcanza los 600ºC de temperatura, su Tipos de Energía
relación es tal que puede Energía de los mares.
sustituir diferentes Energía Eólica.
combustibles: ____________________ Energía Geotérmica.
Energía del Hidrógeno.
Energía a partir de gas
x Se produce a partir de la (Biogas).
descomposición de materia Energía Solar.
orgánica: ____________________

Es un tipo de energía que se ha aprovechado desde años muy remotos, ya que se obtiene a partir del movimiento de las masas de ____________________ aire:

EXPLICACIÓN INTEGRADORA

Bien, ahora ya sabes que…

La energía está presente en todo lo que ocurre en los seres vivos; los cambios físicos y hasta los procesos estelares.

Así como la fuerza es una manifestación de energía, por tanto cuando un cuerpo se mueve desde su estado de reposo con una velocidad, el movimiento que se produce hace que el cuerpo gane energía cinética o de movimiento.

La energía térmica es el movimiento de partículas que produce en los cuerpos una energía interna que es la suma de las energías cinética (de movimiento) y potencial (de posición) de sus partículas.

La temperatura es un intercambio de energía térmica; la cual indica que dos objetos están en equilibrio térmico. Y bien, el calor es el intercambio de energía térmica entre un cuerpo que la pierde y otra que la gana.

2.2 ENERGÍA

En el lenguaje que empleas a diario con frecuencia utilizas palabras que tienen un significado más profundo del que comúnmente le das; por ejemplo, a la luz la asocias con la energía eléctrica; la fuerza se relaciona con el esfuerzo físico, energía, velocidad

o potencia; otros ejemplos son la confusión entre velocidad y rapidez y el uso cotidiano de términos como trabajo y energía. Pero hay que tener cuidado, ya que el vocabulario científico es mucho más riguroso.

El concepto de energía tiene una buena dosis de abstracción, y para que lo entiendas habrá que hacer generalizaciones que van más allá de las actividades de la vida cotidiana. La palabra energía se usa comúnmente en expresiones como: “se me acabó la energía”, “come, para que tengas energía”, “se detuvo porque se le acabó la energía”, en estos casos el concepto se utiliza como si existiera “algo” que mantiene en movimiento a las cosas.

La energía está presente en todo lo que ocurre, desde el proceso de pensar y leer estas líneas, lo que ocurre en los seres vivos; los cambios físicos y hasta los procesos estelares, se deben a la intervención de la energía.

El nivel de utilización de la energía por el hombre a través de su historia tiene relación con la civilización, ya que en el desarrollo de la industria, la agricultura y las actividades comerciales interviene una gran cantidad de ella; por ejemplo, los hombres primitivos, cuya actividad principal era la recolección de frutos, gastaban aproximadamente 1000 kilocalorías diarias y en la actualidad el gasto de energía de cada persona en una sociedad de consumo rebasa las 2 500 kilocalorías diarias; en la actividad comercial, el descubrimiento de diversas formas de energía ha evolucionado desde el empleo de animales, como una manera de desplazar mercancías, hasta el de combustibles especiales para el transporte aéreo.

No es posible encerrar en una sola frase el significado del término energía, por lo que iniciaremos por conocer sus diferentes manifestaciones, refiriéndolas siempre a su utilización.

Si queremos cambiar de posición algún objeto, necesitamos jalarlo o empujarlo ya sea por medio de nuestros músculos o de un artefacto como una grúa o remolque. Estos jalones o empujones son manifestaciones de energía llamadas fuerzas.

Si aplicas una fuerza sobre un cuerpo que está en reposo, éste se desplaza una cierta distancia, en la misma dirección y sentido que la fuerza aplicada, es decir, el cuerpo se mueve desde el reposo con una velocidad y el movimiento que se produce hace que el cuerpo gane energía a la que se le conoce como energía cinética o de movimiento.

Figura 6. Aplicaciones de la energía cinética y potencial

Como puedes observar en el dibujo, la grúa levanta una pesa sobre el pilote, para luego soltarlo y hacer que éste se entierre. Es evidente que mientras más altura adquiera la pesa caerá con mayor fuerza sobre el pilote. La energía que se genera al soltar la pesa es la energía cinética de la que habíamos hablado, mientras que la energía que adquiere la pesa al ser levantada a una cierta altura (h) se llama energía potencial, y se define como la energía almacenada en un cuerpo por la posición que tiene respecto a otro que se toma como referencia. En nuestro ejemplo nos remitimos a la pesa y a la tierra; así, mientras más altura alcance la pesa mayor energía potencial almacenará.

Ya conociste los diferentes tipos de energía, después de observar el dibujo puedes contestar lo siguiente: ¿Qué clases de energía intervienen para enterrar los pilotes de una construcción.

Antes de continuar debemos tener presente que en el Universo existe una cierta cantidad de energía, la cual se manifiesta de diferentes formas y siempre es constante. Esta energía al participar en los cambios de la materia, se transforma de un tipo a otro, pero la suma total de todas ellas no cambia. A ésto se le conoce como la ley de la conservación de la energía que establece que al igual que la materia:

La energía no se crea ni se destruye, sólo se transforma

Ahora bien, cuando describimos la materia, se explicó que está formada por partículas en continuo movimiento. Este movimiento de partículas produce en los cuerpos una energía interna que es la suma de las energías cinética (de movimiento) y potencial (de posición) de sus partículas y que se conoce como energía térmica. Esta energía aumenta al calentar la materia y disminuye al enfriarla.

Cuando dos objetos de diferente energía térmica se ponen en contacto, se transfiere energía de uno a otro; por ejemplo, supongamos que se vacía una cubeta de carbón caliente en un recipiente con agua, el carbón transferirá energía térmica al agua hasta que los materiales tengan la misma temperatura; a ésto se llama equilibrio térmico. Después de un tiempo cuando se toca el carbón y el agua, ambos producen la misma sensación de caliente o de frío y ya no hay más transferencia de energía térmica entre ellos.

Este intercambio de energía térmica se denomina temperatura, la cual indica que dos objetos están en equilibrio térmico. La energía térmica está asociada a la cantidad de partículas y a su movimiento; debido a que este movimiento es muy difícil de determinar, no es posible medir dicha energía directamente; sin embargo, si podemos establecer el equilibrio térmico que alcanzan dos cuerpos. Así, cuando ponemos en contacto un termómetro con otro cuerpo y permitimos que alcancen el equilibrio térmico, la temperatura del termómetro corresponde a la temperatura del objeto, de esta forma medimos indirectamente la energía térmica.

La diferencia entre los conceptos de energía térmica y temperatura se pueden ilustrar con el siguiente ejemplo: si mezclas el agua de una jarra a 85 grados centígrados con el agua de un vaso a la misma temperatura, no habrá transferencia de energía, a pesar de que la energía térmica es mucho mayor en la jarra ya que contiene más partículas. Recuerda que la energía térmica representa la suma de las energías cinéticas y potencial de todas las partículas.

Otro ejemplo, en el que puedes identificar la diferencia entre energía térmica y temperatura, son las siguientes ilustraciones.

¿Qué ocurriría si se vacía el agua de cada uno de los recipientes sobre cantidades iguales de hielo por separado?.

Observarás que el agua de la jarra funde mayor cantidad de hielo que el agua del vaso, lo cual indica que el agua de la jarra tenía mayor energía térmica.

La energía que transita de un cuerpo de alta temperatura a otro de baja temperatura se define como calor, es decir, el calor es el intercambio de energía térmica entre un cuerpo que la pierde y otro que la gana. Las unidades utilizadas para medirlo son la caloría (cal) y la kilocaloría (kcal).

¿Qué es una caloría?. Para establecer esta unidad se tomó como referencia el agua, de tal modo que una caloría (1 cal = 4.184 joules) es la cantidad de energía térmica necesaria para elevar en un grado centígrado (de 14.5 ºC a 15.5 ºC) la temperatura de un gramo de agua. En ocasiones se usa el múltiplo kilocaloría que equivale a 1000 calorías.

Si quemamos un papel o un trozo de madera obtenemos energía en forma de calor; esta energía estaba, de alguna manera, almacenada en los materiales; este ejemplo nos muestra otra forma de energía; la energía química que es la que se encuentra almacenada en las sustancias y que determina la facilidad con la que éstas efectúan un cambio químico.

La energía química almacenada puede liberarse mediante una reacción o cambio químico. En esta forma, muchas sustancias actúan como fuentes o almacenamiento de energía que se emplea cuando se requiere, por ejemplo, la energía almacenada en las plantas es utilizada por los animales y el hombre al alimentarse para obtener la energía necesaria y sus actividades.

En las modificaciones que experimenta la materia se puede absorber o liberar energía que se presenta en diversas formas, ya sea eléctrica, luminosa o calor. Toda la energía que necesitamos para los procesos vitales se produce por los cambios ocurridos en la materia; en sentido inverso, la energía causa cambios en la materia. En nuestra vida algunos de los aparatos que usamos funcionan mediante la interconversión entre la energía eléctrica y la química. Por ejemplo, la energía química se transforma en eléctrica en las diferentes pilas o acumuladores al reaccionar las sustancias que contienen, provocando una corriente eléctrica que se aprovecha en aparatos electrodomésticos y en los automóviles.

En otros casos, la energía eléctrica se transforma en energía química, como por ejemplo en la electrólisis, que es un proceso en el cual una sustancia se descompone por la acción de la energía eléctrica.

La electrólisis desempeña un papel importante en la industria química; muchos metales como sodio (Na), magnesio (Mg) o el aluminio (Al) se obtiene de esta manera, de igual manera se producen el cloro (Cl2) o el agua oxigenada (H2O2). También se emplea este procedimiento para recubrir objetos sólidos de una capa delgada de metal con fines decorativos o de protección, como el chapeado de oro, el cromado, el niquelado, etcétera.

 

2.1.3 PROPIEDADES

La materia, por tanto, está formada por sustancias, cada una de las cuales tiene sus características propias que le dan su identidad y que las hacen diferentes una de otras. De este modo la materia se puede clasificar de acuerdo a las propiedades que presenta. Las cuales son:

Propiedades físicas son las características de las sustancias que pueden determinarse sin que se altere su estructura interna: las más comunes son color, sabor, olor, estado de agregación molecular, densidad, masa, punto de ebullición y volumen.

Propiedades químicas, en cambio, describen la capacidad que tiene una sustancia para combinarse, es decir, para formar otras mediante reacciones químicas, por ello sólo puede determinase alterando su estructura interna.

Tomemos como ejemplo el cloro: físicamente es un gas 2.4 veces más pesado que el aire, es amarillo-verdoso y de olor desagradable; químicamente el cloro reacciona con el sodio para producir una sal (cloruro de sodio), en condiciones comunes al combinarse con el oxígeno no es flamable, se usa como un desinfectante de agua al alterar el metabolismo de las bacterias, las destruye.

Las joyas de “oro” normalmente cuentan con un tanto por ciento de cobre para poder ser manipulada. Por tanto es una mezcla.

Tabla 2. Algunas sustancias y sus propiedades físicas.

Sustancia Cloro Color amarilloverdoso Olor sofocante y picante Sabor picante ácido Estado Físico a 25ºC y 1atm gas Punto de Ebullición -34.6 ºC Punto de Congelación -101.6 ºC
Agua incolora inodora insípida líquido 100.0 ºC 0.0 ºC
Azúcar blanca inodora dulce sólido descompone a 170-186ºC _______
Ácido acético incoloro como vinagre agrio líquido 118.0 ºC 5 ºC

ACTIVIDAD DE REGULACIÓN

Tomando en cuenta la información anterior y tus conocimientos anota en los renglones los datos que faltan.

Aluminio: El aluminio es un metal muy ligero que se funde a 660 ºC y es considerado como un buen conductor de electricidad, normalmente se encuentra en un estado de agregación molecular _______________, color ______________ y su densidad de alrededor de 2.6 g/mL. Este metal reacciona con el ácido sulfúrico diluido, logrando desprender hidrógeno (H2).

Agua Es una mezcla con un estado de agregación

Oxigenada: molecular,__________________, la cual tiene una densidad 1.46 g/mL, mayor al agua normal. Su nombre se debe a que cuenta con una cantidad mayor de _____________________.

Cobre: Metal de color __________________, en su mayoría se conoce bajo el estado de agregación molecular _____________, además de que se pueden hacer aleaciones con metales como: ______________________ y ________________.

EXPLICACIÓN INTEGRADORA

En este momento ya conoces que:

Materia es todo aquello que se puede ver, oír, tocar, oler o saborear. Por tanto, existe materia en todo lo que te rodea (plásticos, vidrios, sal, azúcar, metales, etcétera) y está compuesta por pequeñísimas partículas que se encuentran unas muy cerca de otras dependiendo de las fuerzas de atracción entre ellas, las cuales cambian, de acuerdo, con la presión o temperatura y por ello los estados de agregación molecular de la materia (sólido, líquido, gas) cambian al variar estos dos factores.

La materia está formada por partículas, cuando cada una de sus porciones tiene las mismas características se dice que es homogénea, y heterogénea cuando sus partes tienen distintas cualidades.

El material del que están hechas las cosas se forma de sustancias, que generalmente se encuentran mezcladas entre sí y en pocas ocasiones aparecen en forma pura. Por ello la materia puede presentarse en dos aspectos de acuerdo a su composición: mezcla y sustancias puras.

La materia se pude clasificar de acuerdo con las propiedades que presenta, éstas son propiedades físicas y propiedades químicas.

De esta manera, hoy podemos afirmar que la materia puede mezclarse, reaccionar o cambiar de estado, pero siempre seguirá conservando su masa; esto es parte del principio de conservación de la materia enunciado por Antoine L. Lavoisier (17431794).

La materia no se crea ni se destruye, sólo se transforma

Este principio nos indica que en cualquier transformación, la materia está cambiando de forma o de estado, pero no puede desaparecer o surgir de la nada, ya que la materia es eterna e indestructible. Para que la materia cambie se requiere de la participación de algún tipo de energía.