1.4.4 APLICACIÓN DEL MODELO

El modelo del estado líquido es una ampliación del modelo del estado gaseoso. La diferencia consiste en que en el estado líquido las moléculas que lo componen están mucho más juntas y unidas por fuerzas de atracción.

Estas fuerzas no son lo suficientemente intensas para mantener a las moléculas formando una red rígida, pero sí hay un cierto grado de agregación , como lo muestra el hecho de que un líquido no llena el recipiente que lo contiene. Las moléculas de un líquido tienen movimiento desordenado, aunque éste es más restringido que un gas. Al tener menos espacio entre ellas, están en contacto más estrecho y los choques son más frecuentes que en un gas.

Lo mismo que en los gases, las moléculas de los líquidos tienen energía cinética relacionada con la temperatura. Si una molécula tiene alta energía cinética y está cerca de la superficie del líquido, puede escapar de éste e integrarse en la atmósfera que la rodea, lo que explica la presión de vapor de los líquidos. El proceso mediante el cual las moléculas de un líquido se incorporan al estado gaseoso se llama evaporación.

Algunas moléculas de la superficie de un líquido tienen mayor energía cinética (velocidad) que otras y su elevada energía cinética les permite separarse de ellas y evaporarse. Si la evaporación tiene lugar en un recipiente cerrado, las moléculas que permanecen cerca de la superficie son captadas por el líquido y se condensan, por lo que rápidamente se establece un equilibrio.

La rapidez de salida de las moléculas del líquido es igual a la velocidad de entrada; la presión ejercida por las moléculas del vapor sobre la superficie del líquido se llama presión de vapor, la cual es una característica de cada líquido y varía con la temperatura. Así, pues, la presión de vapor de un líquido es un indicador de la facilidad de volatilización, es decir, a mayor presión de vapor que tenga un líquido más fácilmente formará vapores.

Si a un líquido se le aplica calor, la energía cinética promedio aumenta y, por lo tanto, la temperatura y la velocidad de evaporación. Cuando se calienta un vaso con líquido, se comienzan a formar pequeñas burbujas de vapor, el cual se eleva y sale del líquido. Dicho proceso se llama ebullición; éste, aunque parecido a la evaporación, no debe confundirse.

Cuando las moléculas se evaporan de un líquido se difunden en la atmósfera que les rodea y, por lo tanto, la presión de la atmósfera no afecta al proceso de evaporación. Por otro lado, si el líquido hierve, el vapor escapa del líquido con presión suficiente para desplazar la atmósfera que rodea al líquido. De tal modo, la temperatura que por la presión de vapor del líquido es igual a la presión de la atmósfera que la rodea se llama

punto de ebullición.

La tensión superficial se debe a las fuerzas de atracción intermoleculares. Una molécula que esté en el centro del líquido es atraída en todas direcciones por las moléculas vecinas, mientras que las que están en la superficie sólo son atraídas al interior del líquido, por lo que el área de la superficie libre tiende a reducirse y una fuerza resultante hacia el interior tiene la tendencia a disminuir su volumen. Es el caso de la forma esférica de las gotas de un líquido. La tensión superficial disminuye al aumentar la temperatura, puesto que el mayor movimiento molecular disminuye el efecto de las fuerzas de atracción intermolecular.

EXPLICACIÓN INTEGRADORA

Para poder explicar los tres estados de agregación se debe partir de un diagrama de fases por medio del cual se puedan explicar los fenómenos que ocurren en tu entorno y así comprender el proceso que se lleva a cabo entre cada evento, para ello podemos recurrir al Modelo Cinético Molecular el cual nos va a dar una explicación del comportamiento de los fenómenos y las variables que participan ante cada evento.

Leave a Reply