Browse Category: Química 1

Quimica 1 – Primer Semestre

RECAPITULACIÓN

El propósito de este capítulo fue presentarte un panorama general de las características principales de la Química y su relación con la vida cotidiana.

De esa manera, se ha mostrado cómo esta ciencia se ha desarrollado a partir de la solución de problemas que se presentan en la cotidianeidad, como el descubrimiento del fuego, las formas de producirlo, el manejo de los metales, el uso farmacéutico de algunas sustancias naturales, la industrialización de productos y la posibilidad de contar con alimentos en buenas condiciones en cualquier época del año y lugar. En otras palabras, gracias a la Química nuestra vida es distinta a la de nuestros antepasados.

También hemos visto que para estudiar Química es necesario considerar sus características, esto es, adquirir su lenguaje, usar su método y realizar cuantificaciones y cálculos. No puede aprenderse de memoria, sino “haciéndola”, es decir, requiere de todos tus sentidos, tu curiosidad y de tu imaginación.

El aprendizaje del lenguaje químico te abrirá las puertas del mundo del comportamiento de la materia y de la explicación de los fenómenos. El método, como se mencionó, te posibilitará acercarte con procedimientos específicos a los conocimientos científicos, te proporcionará las herramientas para poder entender el problema, proponer soluciones y comprobarlas. Conocerlo te permitirá recrear, en ocasiones, el camino que siguieron los científicos para descubrir los conceptos, establecer leyes o explicar los fenómenos. La cuantificación tiene la función de precisar el conocimiento de los fenómenos, para que, con base en ello, se pueda predecir el comportamiento de la materia o, en su caso, saber cómo los científicos pueden hacerlo.

AUTOEVALUACIÓN

Verifica tus respuestas a las Actividades Integrales que acabas de realizar:

  1. El aire sí es materia, pues posee características tales como temperatura, masa, volumen; no tiene olor, ni en ocasiones color que puedan captar por los sentidos; sin embargo, su movimiento sí puede detectarse sensiblemente y es lo que llamamos viento.
  2. El calor es la energía que transita de un cuerpo de alta temperatura a otro de baja temperatura, es decir, es el intercambio térmico entre un cuerpo que pierde energía y otro que la gana.
  3. La formación de las nubes está asociada al fenómeno de la evaporación, es decir, cuando el agua se calienta, el vapor generado asciende a la atmósfera, donde, debido a las condiciones de presión y temperatura, se empieza a condensar. En este cambio físico interviene la energía en forma de calor.
  4. Al calentar el hielo éste se funde, es decir, pasa de sólido a líquido; esto sucede porque al aplicarle energía en forma de calor sus partículas se mueven provocando el cambio de estado. Éste es un cambio físico.
  5. Puede decirse que no. Si colocas un poco de hielo en tu mano notarás que poco tiempo después está mojada; esto debido a que la superficie del hielo está derritiéndose por el calor de tu mano. Por otro lado, si colocas un trapo sobre el chorro de vapor que sale de una jarra, verás que tiempo después el trapo está húmedo; esto es porque el vapor de agua se enfría y se transforma en líquido. Por tanto, el agua sólo moja en estado líquido, ya que es una de las propiedades de este estado.
  6. Para esta respuesta puedes considerar los ejemplos mencionados en el texto como térmica, química, eléctrica, eólica, etcétera.
  7. Se dice que la energía cinética es aquella que se genera cuando los cuerpos están en movimiento y que la energía potencial está presente en toda la materia aun sin movimiento (reposo). Recuerda que la energía potencial depende de su posición.
  8. En la fisión, el núcleo de un átomo se separa formando dos, mientras que en la fusión dos núcleos se unen formando uno.
  9. Es un cambio químico, ya que el oxígeno del ambiente reacciona con el hierro del clavo, alterándose tanto la estructura del hierro como la del oxígeno al formarse el óxido de hierro II (FeO).

I N T R O D U C C I Ó N

Si definimos a la materia como “todo aquello que ocupa un lugar en el espacio y tiene masa”, entonces podemos darnos cuenta que lo que se encuentra a nuestro alrededor es materia.

En este fascículo tenemos como objetivo que identifiques los diferentes estados de agregación de la materia; mediante la aplicación de problemas, prácticas de laboratorio y la utilización del modelo cinético molecular; ésto te servirá para poder comprender el concepto de molécula y aplicar los conocimientos adquiridos en los recursos naturales, tales como el petróleo.

Por lo tanto, este fascículo estará conformado por dos capítulos:

Dentro del primer capítulo, titulado “Características de los Estados de Agregación de la Materia” conocerás las características y propiedades de los tres estados de agregación de la materia (gas, líquido y sólido), así como la integración que se puede dar entre estos tres estados, mediante el Modelo Cinético Molecular.

El segundo capítulo, tiene como nombre “Petróleo”, dentro de éste conocerás cuáles son las propiedades, clasificación y estructura de los hidrocarburos. Posteriormente, se mencionará la importancia que tiene el petróleo, así como las ventajas y desventajas de su uso.

1.4.3 MODELO CINÉTICO MOLECULAR

Éstas y otras observaciones experimentales condujeron a los científicos a proponer un modelo para explicar el comportamiento de los gases, el llamado modelo cinético molecular (algunos autores lo llaman teoría cinética molecular), el cual fue emergiendo gradualmente por los trabajos de Daniel Bernoulli (1700-1782) y posteriormente de los de James Clark Maxwell (1831-1879) y Ludwing Boltzmann (1844-1906).

El modelo cinético molecular apoya en los siguientes postulados.

  1. Un gas está compuesto de un gran número de partículas llamadas moléculas (en latín, pequeñas masas) tan minúsculas que su tamaño es despreciable comparado con la distancia entre ellas y el tamaño del recipiente.
    1. Las moléculas de un gas presentan un movimiento rectilíneo rápido constante y al azar. A causa de su movimiento de traslación, las moléculas chocan entre sí frecuentemente y contra las paredes del recipiente.
    2. Todos los choques son elásticos, es decir, no hay pérdida ni ganancia neta de energía cinética molecular en cada choque. Aunque una molécula puede perder energía respecto de otra durante el choque, la energía total del par que choca permanece igual.
  2. A excepción del modelo de los choques, las moléculas de un gas son completamente independientes entre sí, no hay fuerza de atracción o repulsión entre ellas.
  3. Las partículas de cualquier muestra de gas tienen diferente energía promedio, es decir, algunas se estarán moviendo muy rápidamente y otras serán más lentas o inclusive estarán quietas, pero la energía cinética promedio es proporcional a la temperatura absoluta.

Las leyes de los gases pueden explicarse con dichos postulados. Por ejemplo, según la Ley de Boyle, de acuerdo con la teoría cinética molecular, la presión del gas es causada por los choques moleculares contra las paredes del recipiente; si se disminuye el volumen aumenta el número de moléculas por unidad de volumen y resulta una presión mayor, debido a la gran cantidad de choques por unidad de tiempo y de área.

La ley de Charles relaciona las propiedades con los cambios de temperatura. A muy baja temperatura, el promedio de la energía cinética de las moléculas es prácticamente cero. A medida que aumenta la temperatura las moléculas se mueven más rápidamente al hacerse más frecuentes los choques contra las paredes del recipiente, si el volumen se mantiene constante. Por otro lado, si el volumen y la temperatura aumentan, la presión se mantendrá constante, debido a que la disminución de la frecuencia de los choques como consecuencia del aumento del volumen se compensa con el aumento en la velocidad de las moléculas, resultado del aumento de